Materials Growth & Measurement Laboratory

Czech open access research infrastructure

Paper

image
Complex heating of magnetic nanoparticles

Until recently, it was believed that the heating properties of magnetic nanoparticles (MNPs) in high-frequency magnetic fields depend simply on the particle size and their basic magnetic properties, such as blocking temperature, average magnetic moment and magnetic anisotropy. MGML scientists found that heating with magnetic nanoparticles is much more complex.

image
More fun with VI3: van der Waals ferromagnet under pressure

The ferromagnetic compound VI3 has been already investigated in the MGML laboratories as a member of a family of quasi-two-dimensional (2D) van der Waals materials showing promising application potential for the design of spintronic devices. As a next research step of this unique system, we have focused on the evolution of its magnetism in external pressure up to 7.3 GPa…

image
In-house research revealed extreme narrow magnetic domain walls

Low temperature magnetic force microscopy can be used to study magnetic domains in both thin films and (well polished) bulk materials. MGML scientists have performed such studies of an uniaxial ferromagnet UCoGa prepared in single crystalline form, showing extremely narrow magnetic domain walls.

image
Micro structuring using Focused Ion Beam

The basic condition for conduction relevant research is the availability of suitable samples. Despite the many crystal growth techniques available in MGML, several growth difficulties can always remain unsolved leading to very small or multiphase samples. We have implemented a microstructuring technique of multiphase or irregular samples to create devices for charge transport measurements. This allows us fabrication of samples with well-defined crystal orientation and dimensions so the resistivity can be determined with high precision despite sample size.

image
Ferromagnetic two dimensional van der Waals materials: the VI3 case

Reducing the dimensionality of condensed matter often leads to exceptional electronic, optical, and magnetic properties that enable new high-tech applications. Two-dimensional layered materials characterized by some interlayer bonds realized through very weak van der Waals (vdW) forces show an increasingly attractive appeal to scientists working in the fields of basic physics, material science and engineering. Slabs of atomic layers can be easily exfoliated by breaking the vdW bonds with little damage to both the extracted slab and the remaining structure. Novel physics and engineering of new ultrathin devices may be explored by exploiting the material properties of the slabs in isolation or by mixing and matching them to create new structures with atomically thin heterojunctions.

image
Excursion to laboratories for Omská High-School students

On Thursday 12th December we were visited by students of Omská High-School. They tried to bake a sample in an arc furnace, learned how to examine crystals by X-ray diffraction, which is also useful for hydrogen, tested the strength of magnets and looked into the pressure cell. And how to explain or obscure it with theory.

Other available tags

paper (6) collaboration (6) magnetism (4) students (4) conferences (3) people (3) crystal structure (2) specific heat (2) user programme (2) thesis (2) industry (2) high magnetic field (1) resisitivity (1) FIB (1) 20t (1) dielectric (1) in-house (1) crystal growth (1) neutrons (1) nanomagnetism (1)